
Processing XML Text with Python and

ElementTree – a Practical Experience

Radovan Garab́ık

L’udov́ıt Štúr Institute of Linguistics

Slovak Academy of Sciences

Bratislava, Slovakia

Abstract

In this paper, we evaluate the use of XML format as an internal format

for storing texts in linguistic corpora, and describe our experience in using

the ElementTree Python XML parser in the Slovak National Corpus.

1 Introduction

XML format, despite its shortcomings, is attracting more and more attention
as a format for text representation in corpus linguistics. XML is intended as a
free extensible mark-up language for the description of richly structured textual
information. The exact method of data description is unspecified and is usually
designed according to specific requirements.

The Text Encoding Initiative (TEI) project[1] tries to establish a common
XML schema for the general-purpose encoding of textual data. Following the
relative success of SGML-based CES (Corpus Encoding Standard), an XML
version of it was proposed[2] as a standard to store corpus compatible data.

XML as such gained quite a lot of popularity among different corpora (and
corpus linguists); some of them use different XML schemas[3], but many of them
use the XCES format.[4]

2 Information Hierarchy in Text Documents

Logically, we can design a rather complicated hierarchy for a document, consist-
ing of sections, each with its heading, each section consisting of subsections (each
of those eventually with a heading of its own), then divided into paragraphs.
Other types of texts (such as poems) can have different, often more complicated
structure. We are talking now only about the structure of information flow in
a document, not about other linguistic information (like sentence boundaries).
When considering the features (styles) of common word processing and desktop
publishing systems, one would expect that this kind of structure is present and
in common use.

However, looking at actual texts that come into corpora, we find this kind
of structure only very rarely. The overwhelming majority of word processing
DTP software users do not use the facility offered by the software to create

(or use those already existing) logical styles to format the document, but apply
physical text attributes to the document parts instead – so, for example, the
headers are distinguished from the rest of the text only by changes in font size
or font weight. This makes it almost impossible to use universal tools to extract
logical structure from the documents. Often, only very basic structure can be
identified and kept in the corpus.

3 Various Levels of Text Representation

There are actually two different ways of putting texts into the XCES format.
One way is to use XML tags to mark up the hierarchical structure of text
flow and typographical information. The other way is to use XML to organise
basic structural elements of the texts (usually words) together with additional
linguistic information into a rigid structure for further processing – in this way,
we are using XML format as a (rather inefficient) way of emulating a tabular
format.

4 Why Python

Our programming language of choice is Python[5], a high level object oriented
programming language with a very clean syntax. Typically, using Python for
software development leads to very short deployment times when compared
with others, better promoted languages. The clarity of the syntax also con-
tributes to very few language-oriented bugs in the software, leaving more time
for debugging and optimalisation of the algorithms used. Python also has an
excellent standard library, covering most of the routine programming tasks con-
nected with interfacing various levels of the operating system, user interaction
and robust data manipulation. There are also many other external libraries
(modules) covering more specialised tasks, and connecting to existing libraries
in other programming languages (most notably C and C++) is easy, insofar as
programming in C or C++ is easy.

The disadvantages of using Python stem mostly from the fact that it is an
interpreted language, with the consequent negative effects relating to speed of
execution. While several Python compilers, optimisers and JIT-compilers have
been designed, at least theoretically, only Psyco[6] seems mature enough for
production use, and its performance gain is not very impressive – thanks to
Python’s dynamic nature.

5 Structure of Data in the Slovak National Cor-

pus

Texts coming into the corpus are put into a hierarchical structure, each level
corresponding to a different stage of text conversion and processing. Initially,
texts are stored in the Archive in their original format. The texts are then con-
verted into common text format, keeping some typographic information present
in the original sources. We call this level of text processing the Bank. The data
are then cleaned up and additional linguistic information is added to them, and

the files are placed in the next level called the Corpusoid. The final step in data
processing is a level called simply the Data, where the data are converted into
binary format for the corpus manager.

File format in the Bank is in fact a simple subset of XCES-conforming XML.
The files from the Archive are converted into this common Bank-format and
these files are then converted on their way to the Corpusoid In the Corpusoid,
texts are already tokenised, tokens are grouped into sentences, and each token
contains additional information about lemma and morphosyntactic categories.
Therefore, XML is used here to implement this tabular-like structure.

6 Using ElementTree

ElementTree[7], by Fredrik Lundh, is a Python implementation of an XML
structure representation, in DOM-like style. The whole tree structure is rep-
resented by an ElementTree object, which can be created from scratch or read
from an existing XML file. Parsing an XML file can be done in one line of code:

tree = ElementTree.parse(’filename.xml’)

Similarly, writing in-memory representation of an XML structure to a file can
be done in this way:

tree.write(file(’output_filename.xml’, ’w’), encoding=’utf-8’)

Each XML node is represented by a dictionary-like object of an Element class.
It is possible to loop through children of the node, to find a given subnode, to
query attributes of the node or to modify any of these in place. In order to
start working with nodes, we have to create a reference to a top-level node in
our XML structure:

root = tree.getroot()

root is now an Element object. Let’s take as an example the following piece of
an XML file:

<p style="plain">Paragraph with a <hi>highlighted</hi> word.</p>

This will be represented in Elementtree as an Element class with the following
attributes (some are omitted for brevity):

element.name == ’p’

element.text == ’Paragraph with a ’

element.attribs = {’style’:’plain’}

element.tail = None

element.children = [hi_element]

where hi element is another Element class:

element.name == ’hi’

element.text == ’highlighted’

element.attribs = {}

element.tail = ’word.’

element.children = []

The problem with this approach is obvious: while the text after the high-
lighted part in our example is logically and structurally on the same level as
the rest of the text, in Elementtree XML representation it has been put into
the <hi> element as a tail attribute, creating a lot of problems when trying to
program a way of iterating through the text, because suddenly one has to be
aware that parts of the text can be hidden in subordinate elements – and we
have go into arbitrary depths.

In fact, as our experience in parsing the bank format shows, this problem is
really intimidating. We had to use complicated solutions, often including careful
recursion into subnodes, and we learned that it is almost impossible to modify
the document structure in place, because one has to be careful about putting
the tail elements into the correct places when eliminating, adding or otherwise
modifying the children nodes.

Fortunately, we need not to deal with the texts on this level, the only thing
we have to do with texts in the Bank is to tokenise them and transform them
into the XCES Corpusoid files.

Looking on the bright side, ElementTree turned out to be a very useful
representation of XCES files in the corpusoid. Each token is represented by
a <tok> node, containing several subnodes describing the token. At the first
stage, just after converting the text from bank into XCES format, there is just
an <orth> subnode with original wordform as a text attribute:

<tok>

<orth>meč</orth>

</tok>

The text is then lemmatised and morphologically annotated. We are using
the software described in [8, 9]. The system consists of an external executable
program, expecting data in its own SGML encoded format, transforming it and
writing the output into an SGML output file. In order to utilise the tagger in our
system, we convert our XCES file into input format, run the tagger, then iterate
through tokens in the output SGML file and fill in lemmas and morphosyntactic
tags into XML elements.

After the analyser run, XML in the Corpusoid looks like this (indentation
has been added for clarity):

<tok>

<orth>meč</orth>

<disamb>

<base>meč</base>

<ctag>SSis1</ctag>

</disamb>

<lex>

<base>meč</base>

<ctag>SSis1</ctag>

</lex>

<lex>

<base>mečat’</base>

<ctag>VMesb+</ctag>

</lex>

</tok>

The results of the analyser run are stored in a sequence of <lex> elements.
Each <lex> element describes one possible combination of a lemma (base node)
and morphosyntactic tag (ctag node), corresponding to a given wordform. Out
of these <lex> elements, one is chosen by a disambiguating module of the anal-
yser as the right one for the given word, using statistical principles (see [8]), and
is put into a <disamb> node.

Commented pseudocode (a valid python code) adding a <lex> element into
the Elementtree corpusoid representation can look like this:

tok variable refers to an element corresponding to

a <tok> entry in XML file

#

first, create a subnode of a <tok> node, with XML tag ’lex’

lex = SubElement(parent=tok, tag=’lex’)

add newlines to make the XML look more pretty

lex.text = lex.tail = ’\n’

create a subnode of a <lex> node, with XML tag base

base = SubElement(parent=lex, tag=’base’)

put the actual content into the <base> XML ’node’

base.text = lemma_from_analyser

create a subnode of a <lex> node, with XML tag ’ctag’

ctag = SubElement(lex, ’ctag’)

put the actual content into the <ctag> XML node

ctag.text = tag_from_analyser

that’s all

It is possible to run other different analysers (e.g. semantic tagger) at this
point; adding additional XML tags (i.e. subelements) into the <tok> node is
really easy. Only if we need to modify the superior XML structure, we have to
refrain from modifying the document in place because of the difficulties involved,
and we should better create a new elementtree structure and create elements
and subelements of it as needed.

7 Compatibility and Performance

ElementTree, having been written in pure Python, runs wherever Python can
run, without any problems whatsoever. This includes almost all modern Unix
operating systems together with Linux and MacOSX, and the Microsoft family
of operating systems. Since XML has been designed from the beginning as a
common format for textual data cross platform interchange, there are no prob-
lems at all in using documents transferred to/from other platforms. To avoid
eventual problems with character encoding, we universally use UTF-8 encoding
in NFKC canonical normalisation (as is the de-facto norm in the Unix world).
The other, perfectly acceptable way would to use just ASCII encoding, and have
non-ASCII characters represented as XML entities. Being written in Python,
one could expect ElementTree not to perform sufficiently well. However, in ad-
dition to the pure Python version, there is an alternative cElementTree module
written in C, with ElementTree-compatible API, much better performance and
lower memory requirements. As our experience shows, the speed of parsing is
sufficient even for pure Python version – on a modest 1200 MHz Pentium III

CPU, an average speed of parsing a completely annotated XML file is about 1200
tokens per second. The morphological tagger on the above configuration is able
to analyse 250 tokens per second, so the total overhead of using the Element-
Tree Python-based solution is not bad at all. ElementTree, being DOM-like,
not SAX-like, requires the whole parsed document to be present in computer
memory; therefore the memory requirements are going to be important. For
example, representation of fully annotated document of about 200 000 tokens
(one of the biggest continuous texts present in the Slovak National Corpus),
being 16 MB of size, takes 410 MB of memory. The C version gives much bet-
ter results – parsing speed is about 80000 tokens per second, and the above
mentioned document takes 62 MB of memory, which is perfectly adequate for
modern computer systems.

There is also another implementation of the Python XML parsing library
with API almost identical to ElementTree, called lxml[10], based on very fast
libxml2 parsing library[11]. In addition to ElementTree capabilities, it exposes
libxml2 and libxslt specific functionality, providing a way of handling XPath,
Relax NG, XML Schema, XSLT and c14n. However, we did not evaluate this
software.

8 Conclusion

Using Python has no doubt great advantages when used in general program-
ming, especially considering its clean syntax, readability and extensive standard
library and rich language features, all contributing to very rapid programming.
Out of the different XML parser libraries existing for Python, ElementTree
stands out because of its pure pythonic approach to the internal XML represen-
tation. Using ElementTree is not so straightforward during the first stages of
text processing, with complex XML structures usually used to represent typo-
graphic information, but it really shines when processing and modifying already
tokenised text, with linear sequence of tokens (or other text units represented
as data described by XML tags). The approach described is successfully used
in the Slovak National Corpus, where Python is the programming language of
choice, used at almost all levels of text processing and conversions.

References

[1] http://www.tei-c.org/

[2] Ide, N., Bonhome, P., Romary, L., XCES: An XML-based Encoding Stan-

dard for Linguistic Corpora. In: Proceedings of the Second International
Language Resources and Evaluation conference. Paris, European Language
Resources Association (2000)

[3] Zakharov, V., Volkov, V.: Morphological Tagging of Russian Texts of the

XIXth Century. In: Text, Speech and Dialogue. Proceedings of the 7th

International Conference TSD 2004. Brno, Czech Republic: (2004) 235–
242

[4] Przepiórkowski, A.: The IPI PAN Corpus preliminary version. Warszawa,
Instytut Podstaw Informatyki PAN

[5] http://www.python.org/

[6] Rigo, A.: Representation-based Just-in-time Specialization and the Psyco

prototype for Python. In: Proceedings of the 2004 ACM SIGPLAN sym-
posium on Partial evaluation and semantics-based program manipulation.
Verona, Italy: (2004) 15–16

[7] http://effbot.org/

[8] Hajič, J., Hladká, B.: Czech Language Processing - POS Tagging. In: Pro-

ceedings of the First International Conference on Language Resources and

Evaluation. Granada, Spain: (1998) 931–936

[9] Hajič, J., Hric, J., Kuboň, V.: Machine Translation of Very Close Lan-
guages. In: Proceedings of the ANLP 2000. Seattle, U.S.A. (2000) 7–12

[10] http://codespeak.net/lxml/

[11] http://xmlsoft.org/

