
Evaluating Grid Infrastructure
for Natural Language Processing

Radovan Garabík1, Jan Jona Javoršek2, and Tomaž Erjavec2

1 L’. Štúr Institute of Linguistics, Slovak Academy of Sciences, Bratislava, Slovakia
garabik@kassiopeia.juls.savba.sk

2 Jožef Stefan Institute, Ljubljana, Slovenia
jan.javorsek@ijs.si tomaz.erjavec@ijs.si

Abstract. In this article we analyze common human language technologyre-
quirements and the possibility of implementing them using Grid infrastructure.
Different possibilities for the setup of an execution environment are treated and
the standard PKI based Grid security approach is explained,with an emphasis of
securing data access in a potentially untrustworthy environment. Two examples
of running unmodified NLP applications are presented.

1 Introduction

Increasing computing requirements for acquiring and processing large textual data-sets
and working with larger and larger corpora in Natural Language Processing (NLP) and
related disciplines together with ever increasing availability of computing resources
allow us to work on NLP algorithms and tasks that were impractical just a few years
ago. The core of the problem shifted from obtaining access toenough computation
power and from optimizing algorithms into developing efficient ways of allocating the
computing resources to various tasks and into finding efficient ways of dealing with
huge amounts of data. Since the most accessible computing environment moved from
large centralized supercomputers into the vast number of available servers connected
with the ubiquitous Internet, a new paradigm in computing emerged: massively paral-
lelized algorithms running on widely distributed networksof interconnected computers.

One of the infrastructure approaches is the Grid network, which provides a com-
plete environment for heavy-duty computational tasks, with working solutions for user
authentication, data storage, distributing load over the available resources, access con-
trol and the whole infrastructure for user management. First used mostly for computing
tasks in high energy physics, the Grid is nowadays used for tasks in several different
research areas. The use of Grid infrastructure for NLP has been previously discussed
with several proposals (cf. [19], [4], Neuroth et al. [14], [9], [10], [12], [11], [13],
reviewed in [6]).

In this article, we explore the idea of utilizing the Grid infrastructure for NLP-
related tasks. Not just the computational requirements, but also commonly useful fea-
tures of shared data repositories and existing Grid security features are discussed. Since
the whole Grid environment runs exclusively on the GNU/Linux operating system
(although there are efforts underway to port the Grid software to other Unix-like plat-
forms, such as the BSD family and Mac OS X), our point of view will deliberately be



94 Radovan Garabík, Jan Jona Javoršek, and Tomaž Erjavec

rather ‘GNU/Linux centric’, and the discussed software environment and tools will be
implicitly understood to be GNU/Linux specific (unless stated otherwise).

2 Legal issues

The actual deployment of Grid computing in the natural language processing area
(especially relevant for corpus linguistics) faces specific legal issues – the data being
processed are in majority of cases copyrighted, and the research institutions either have
very strict legal agreements governing the use of the data, or are operating entirely on
copyright law sections allowing scientific and research useof the data (fair use in the
U.S.A. jurisdiction, citation and educational use in many of the EU countries’ copyright
laws). The situation is somewhat similar to the problems theusers of Grid computing in
health care systems – though in that case, metadata are the most sensitive and protected
part of the data-set, while in corpus linguistics the data (i.e. texts in the corpora) are
sensitive, but the metadata is usually freely accessible [17].

In any case, the research institution using the data for research most likely does
not have the right to distribute the dataat all. If the contractual obligations prevent
the institution from physically copying the data beyond thepremises of the institution,
it might be still advantageous to use the Grid infrastructure for computing clusters of
the institution itself, and use middleware functions to restrict data-replication to those
processing nodes and data storage elements physically located in the organization. This
way, the whole Grid can still be used for less sensitive tasks, or for post-processing
the results of operations on sensitive data (when the post-processing does not include
access to sensitive data), while at the same time the computing nodes will be available
as part of the whole Grid computing pool when they would be left idle otherwise.

While the actual uploading of the data to Grid-enabled storage is not to be consid-
ered a form of ‘distribution’ as long as no other person or organization is allowed to
get the data, it is nevertheless desirable to protect the data from casual snooping. For
one thing, an administrator of the Grid node where the data physically reside can get
access rather trivially; and while he or she is legally obliged not to misuse his access
(usually by rather strict agreements, in the case of European Grid infrastructure), a
measure of additional protection seems to be necessary – to avoid data leaking in case
the computer hosting the Grid node is compromised, unbeknown to the administrators.
We discuss security measures used in the Grid infrastructure in the following section.

3 Software environment in the Grid

The different implementations of Grid middleware all follow the same workflow: the
user has to provide a way to parallelize the computing task ina number of jobs that can
be run in parallel and encode the solution by providing ajob specification, indicating the
data files required (using URIs), suitable computing environment (ABI, API, execution
environment), computing time and resources needed (wall-time, RAM, disk) and a way
to store the results.



Evaluating Grid Infrastructure for Natural Language Processing 95

This can be done manually, and a job is then submitted with a dedicated command,
or, alternatively, can be done with the help of a dedicated web application, usually
domain or experiment specific.

The system then takes care of selecting the appropriate Gridsite and free worker
nodes, downloading the data files, making the pre-installedsoftware (execution envi-
ronment) available and starting the job script. A number of tools enable the user to
monitor the progression of the task, including its standardinput and standard/error
output, working directory contents etc.

When the job finishes, it may upload the resulting data files toa Grid-enabled disk
storage, or, alternatively, the user can use command-line tools to download the data
from the working directory directly.3

To make the system work reliably and securely, a number of information, moni-
toring and accounting systems are part of the infrastructure. In addition, an advanced
security model is used to ensure resource protection and data integrity. As we have to
consider this system’s suitability for protection of copyrighted data-sets in linguistic
resources, a short overview is presented in the following subsection.

3.1 Security

Computing grids had to be very security-conscious from the very beginning, since the
very premise of a Grid network is, from the point of view of thesite administrator, to
give external users access to the local computing infrastructure and, from the point of
view of Grid users, to entrust data and applications to untrusted, foreign sites.

Moreover, the basic requirement for a viable, scalable and sustainable security infra-
structure in the context of large Grid networks has to be a robust solution with as few
single points of failure as possible to avoid failures of security services that could effect
negatively the availability of the whole infrastructure.4

Grid security has several components:(a) Authentication, a method of confirming
the identity of the user or organization behind an operation, is implemented on the
basis of the Public Key Infrastructure (PKI) and standard x509 digital certificates (with
a number of extensions to facilitate the use of PKI in the context of Grids).(b) Au-
thorization is provided in the framework of virtual organizations (VOs), a mechanism
enabling Grid users all over the world to organize themselves according to research
topics and computing requirements, regardless of geographic constraints, and permit-
ting sites to regulate the use of their resources according to user, discipline, software
requirements etc.(c) Monitoring and ticketing permits users and administratorsto keep
track of infrastructure availability and to react to technical and security matters in a
timely fashion.(d) Accounting reports on the use of the infrastructure and enables the
community to regulate and enforce the use of the infrastructure.

Public Key Infrastructure. Public Key Infrastructure, first introduced to the general
public in the context of securing the web and enabling on-line shopping and banking,
has become the standard authentication model in many application domains. Defined

3 See [5] for architecture overview of the NorduGrid ARC middleware.
4 For an overview, see [8].



96 Radovan Garabík, Jan Jona Javoršek, and Tomaž Erjavec

by a number of Internet Drafts, RFCs and standards, PKI is a widely deployed and
evolving system.5

PKI is based on the property of asymmetric ciphers, where a different key is used for
encryption and decryption. This property allows the encryption key to be always kept
private and secret and the decryption key to be public, usually published with some
information about the owner of secret key in the form of a x509digital certificate.

In PKI, such a digital certificate is used as the token of identification: it is issued
by a certification agency (CA) on the basis of an identification process (i.e. checking
legally acceptable personal ID documents in person). But the certificate is coupled with
a secret key that has been generated by the user requesting the certificate and is never
exposed to the CA. To issue a certificate, the CA now sets up information about the
entity (user, host or service) to be certified in accordance to the identification data
provided in a standard form called a Distinguished Name (DN,following a LDAP-
like name scheme:CN = Joe User, OU = My Department, DO = Institute of
Dispersive Linguistics, DC = San Marino, and signs it with their own secret
key from the CA certificate.

This scheme ensures that nobody, not even the CA, can use the certificate (since
only the owner of the certificate possesses the secret key) and protects the information
in the certificate with the signature, produced with the CA’sown secret key.

To make the system work, CA certificates with public keys are published in a well
advertised manner (or shipped with software, such as. web browsers, Grid middleware
packages and GNU/Linux distributions). Recipient of a document or a connection that
uses a client certificate and is encrypted or signed with sucha certificate can therefore
verify that the document or connection really was encryptedor signed by the said
certificate by decrypting it with the public key included in the certificate, and it can
verify the information in the certificate by checking the certificate with the CA public
key in the same manner.

A number of additional security measures are used in the Grid: CA secret keys are
kept in off-line systems or in dedicated certified hardware modules (hardware security
modules or HSM) while end-entity certificates are re-issuedwith new keys yearly or
kept in hardware security tokens. In addition, actual user certificates are never entrusted
to non-trusted entities: for almost all operations in the Grid, short-lived proxy certifi-
cates are used instead (described bellow).

Virtual organizations. While PKI provides authentication, a different system is needed
to provide authorization, i.e. to help decide if a given user, host or service is to be
allowed to carry out a specific task: use a specific resource oraccess specific data. In
the context of Grid computing infrastructure, this role is implemented in the framework
of virtual organizations (VOs).

A Virtual Organization serves two purposes:(a) As an organizational form, a VO
permits a number of researches from different organizations, usually geographically
dispersed, to collaborate and share tools, data and resources.(b) In the Grid security in-
frastructure, a VO provides means of regulating access to resources, i.e., a VO provides
authorization after authentication is provided by PKI.

5 See [2] for an extensive up-to-date overview of the relevantdocuments.



Evaluating Grid Infrastructure for Natural Language Processing 97

With this combination of roles, Virtual Organizations haveproven themselves to be
most efficient in enabling a higher level of international collaboration and have permit-
ted the European Grid network to foster new, faster development in many disciplines
by providing an unprecedented framework for internationalcollaboration.

In practice, members of a research project or a discipline can set up a VO and
decide on its modes of operations and access to resources quite independently. They
have to decide what kind of tools the VO members will be using in the Grid, define the
data formats, prepare data repositories, develop execution environments with the tools
installed and set up a Virtual Organization Membership Service server (VOMS server)
to store authorization credentials.

Then some resources have to be made available to the community of VO members.
In practice, that means obtaining support of a number of Gridsites (organizations own-
ing computing clusters partaking in the Grid) that have to configure their Grid middle-
ware installations to include the new VOMS server in its authorization procedures and
to either install the execution environment (or, more realistically, environments) for the
VO or give access to some members of the VO so that they can perform the installation
and maintenance if the execution environment on the site themselves. Additionally, a
number of Grid storage elements (SE) has to be configured to allow the VO members
to access and store the data on their disk space.

Proxy certificates. With the VO and VO supporting Grid sites, a VO member can
submit Grid jobs and access VO-owned data using his certificate. This is implemented
in an indirect manner by means of Grid proxy certificates, as mentioned previously in
the discussion of PKI infrastructure.

Grid proxy certificates are(a) primarily used to permit a job to authenticate in the
name of the user spawning the job, without the requirement ofdirect user interactions
during the course of the job. This means that the proxy certificate must have the same
DN as the users’ certificate, but it has a different secret keywhich is not protected with
a pass-phrase that would require user interaction on the keyboard. Proxy certificates are
generated with a tool that uses the users’ certificate to signthe proxy (as if it were a
CA), thus confirming that the proxy was indeed generated by the user. In addition, gird
proxy certificates are protected with file permissions and are always short-lived (from
several hours to a few weeks) to mitigate the risk of the unprotected secret key.

To interact with the VO authorization system, the user generates a VOMS Grid
proxy certificate that obtains special certificate extensions from the VOMS server and
incorporate them in the proxy certificate. These extensionsencode VO group and role
attributes of the user and are themselves signed by the VOMS server with its service
certificate, using the PKI infrastructure’s authentication facilities to implement an au-
thorization layer.

In this manner, a job can obtain authorization to use computing resources and data
simply by providing a suitable VOMS proxy certificate. Its attributes are recognized by
the Grid manager servers that provide it with to data storage(storage resource managers,
SRM) and other resources.

As and additional level of security, Grid managers assign each job a temporarily
unique user ID in the underlying operating system mapped from its active VO role in



98 Radovan Garabík, Jan Jona Javoršek, and Tomaž Erjavec

such a way that no jobs with different roles (and therefore potentially different access
permissions) can share access on the underlying implementation.

In this way the system implements fine-grained control over the use of Grid re-
sources and data without any reliance on the availability ofauthentication and autho-
rization servers, thus avoiding a single point of failure that would have a significant
impact on the scalability of the system.

Data Protection. Using these security components, additional measures of data pro-
tection can be implemented when necessary. In the context ofNLP, such a measure is of
critical importance, since most of the data-sets in corpus linguistics contain copyrighted
texts that need to be protected.

To solve this problem, the corpus data has to be suitably protected where it is
permanently stored. Therefore we propose to store the corpus data in encrypted form
in a dedicated storage element and set up the access authorization in such a way that
access is restricted to VO users who belong in a VO group of users who signed the
necessary legal agreements to access the data. Furthermore, we propose that the data
is transferred to the untrusted environment of Grid worker nodes, where jobs perform
their computations, in the encrypted form and that the decryption keys are issued to the
jobs protected with asymmetric encryption decryptable only by the job’s Grid proxy
keys so that only the jobs can access the keys and decrypt the data.

In this manner, access and decryption is regulated with the authorization of embed-
ded VOMS attributes in the proxy certificate without any additional authorization steps,
while the data is never shipped or stored in unencrypted form.

If the tools used by the job have to store temporary files on disk, these are protected
from other processes (with the exception of system administrators, who are already
bound by strong agreements pertaining to data security on the Grid) and are in addition
of short-lived nature.

There exist different implementations of the system described. The simplest form
involves the use of a decryption filter in the job script and israther simple to deploy. A
more flexible solution, based on CryptoSRM (cryptographic storage resource manager)
and Hydra Key Storage (a distributed fragmented encryptionkey storage system) is
described in [17].

4 General requirements of NLP related tasks

Contemporary NLP tasks are rather varied; some of them require a lot of “pure” com-
puting power, but many tasks, especially in the area of corpus linguistics, merely pro-
cess large data files. From the software point of view, the tools used cannot be more
diverse – they are often programmed in typical computer languages, like C or C++,
but a lot of data processing is done in scripting languages, such as Perl or Python, and
Java is increasingly popular, and more often than not, one specific task uses several
different tools bound by short programs written in a shell script. The use of (high level)
scripting languages even for the computing intensive tasksmeans that the analysis is
less effective than it could be, but the ease of creating and maintaining the tools more
than outweights this particular disadvantage. From this follows than the tools are often



Evaluating Grid Infrastructure for Natural Language Processing 99

fragile and require a specific environment, which sometimesmeans that even using a
different GNU/Linux distribution that the one the softwarehas been developed on can
be a major problem.

The Grid environment, due to its initial connection with theuse in High Energy
Physics, predominately uses Scientific Linux CERN distribution (SLC) version 4 for
the job computing environment (with a changeover to version5 currently in progress).
The ideal solution would be of course to put all the necessaryNLP software into the
execution environment (which is available at each of the computing nodes) and use
the standard distribution. It is, however, sometimes much more convenient to use an
operating system environment more suitable for the users and their tools. There are
two possible solutions: to run under a chroot environment orto use virtualization. Both
options are discussed below.

4.1 Userspace and full virtualization

Chroot is a UNIX system that changes the effective root of thefilesystem for the process
and its children. The basic usage for chroot is twofold: it can be used to restrict untrusted
(or potentially dangerous) processes from accessing the rest of the filesystem, or it
can be used to run processes in a different filesystem environment (different filesystem
layout with different system executables and dynamic libraries). It should be noted that
chroot does not offer true virtualization since isolation from the host system is not com-
plete – in particular, system kernel, networking subsystemand process management are
shared with the host system, so that the processes in the chroot environment cannot bind
to sockets that are used on the host system (and vice versa), and if process management
is to be possible in a chroot environment, theproc filesystem has to be mounted inside
chroot environment, enabling the guest to access the information about host processes6.

On the other side of the spectrum, there are complete virtualization solutions, emu-
lating the guest system. These can emulate the CPU completely in software (approach
commonly used in emulating vintage computers on modern operating systems, or when
a computer platform switches the architecture), or run the guest machine natively, trap-
ping and emulating only privileged or unimplemented instructions. Modern computer
architectures usually offer dedicated hardware features to facilitate the implementation
of virtual machines7, some mainframe architectures even offer complete, seamless vir-
tualization in hardware.

Then there are several different approaches that lie somewhere in between those
two extremes, ranging from(a) paravirtualization, which requires cooperation from the
guest operating system kernel (in order to achieve negligible performance loss due to
the virtualization), used e.g. by theXEN virtualization solution; to(b) compartmental-
ization (i.e Linux virtual servers andOpenVZ), which divides the host operating system
into different compartments with completely separated processes, network access and

6 This does not matter as much as it seems as long as the chrootedprocessed run under different
PID from the host ones, because a non-root user cannot affectother processes, and a chrooted
superuser can break out of the chroot anyway.

7 Until rather recently (before the introduction of VT-x and AMD-V), such features were not
available in common Intel-compatible off-the-shelf computers.



100 Radovan Garabík, Jan Jona Javoršek, and Tomaž Erjavec

filesystems but sharing the same kernel; to vanilla kernel namespace support, which
only separates user and process management (slightly extending chroot separation).

The virtualization techniques mentioned differ on performance impact [15] – rang-
ing from none at all in case of a simple chroot or chroot with namespaces, over very little
for OpenVZ-like compartmentalization to a more significant one for full virtualization.
The specific areas of impact vary, too – while the raw CPU performance rarely decreases
by more than a few percent (with the exception of complete software emulation of the
guest architecture), I/O penalties are sometimes severe.

From our point of view, the best way to use the specific software is to install it inside
a runtime environment which is made available to the jobs when submitted to the Grid.
This is directly supported by the Grid infrastructure and requires no additional steps or
privileges. However, at this time this requires a significant effort, since all the tools and
their dependencies have to be compiled (or installed in a non-standard location inside
the runtime environemnt) on the standard SLC distribution,which can be a problematic
if the software has many external dependencies.

Installing a chroot environment, on the other hand, enablesus to avoid porting the
software to the SLC distribution – inside the chroot, we can install any reasonably
standard GNU/Linux distribution and any necessary software packages. In addition,
many of the commonly used distributions already have support for (at least partial)
installation inside a chroot environment built in. But in the context of Grid infras-
tructure this solution has a significant disadvantage, since it requires support from the
cluster administrator since chroot environments are not a standard feature of the Grid
environment.

Using a complete virtual machine allows us to run a complete GNU/Linux distri-
bution, with completely separate networking support and user management, including
the ability to run processes with superuser privileges, andthe ability to use filesystems
otherwise not supported by the host system8. But the main advantage is the possibility
to run completely different operating system9. However, installing and using virtual
machines requires not just administrator cooperation, butoften also nonstandard host
operating system extensions (such as special kernel modules). One of the more interest-
ing virtualization systems in this context is User Mode Linux, which doesnot require
any special host support, runs as an ordinary user process and provides a complete guest
Linux kernel environment. Unfortunately, guest environment in this case suffers from
a big I/O performance degradation, which can be a noticeableproblem when dealing
with very large corpus data.

While there is significant research in the use of different kinds of virtualization in
the context of Grid technologies, this is not a wide spread feature at this time. We have
been able to use clusters with full support for chroot environemnts, but we realize that
for quick adoption and widespread use of Grid computing in NLP, porting of tools to
the most often supported environment, i.e. SLC, will be necessary.

8 Such as encrypted filesystems.
9 Therefore we can use e.g. the tools available only for Microsoft R© WindowsR© family of

operating system, if we can get around their mostly point-and-click nature and run them
noninteractively.



Evaluating Grid Infrastructure for Natural Language Processing 101

5 Proof of concept

This section presents and experiment in using the Grid to execute two NLP tasks for
the Slovak language. The first subsection introduces TectoMT, a machine translation
system, the second morphosyntactic tagging with morče, and the third gives the exper-
imental usage of the two systems on the Grid.

5.1 TectoMT

TectoMT [20] is a software framework aimed at machine translation at the tectogram-
matical level of analysis. The system is modular – the framework itself consists of
many independent modules (blocksin TectoMT terminology), each implementing one
specific, independent NLP-related task. Each of the blocks is a Perl module that inter-
acts with the system using a single, uniform interface. However, sometimes the module
serves only as a wrapper for the underlying implementation in another programming
language. The tectogrammatical annotation and consequently the TectoMT framework
primarily stores linguistic data in its own format, called TMT. TMT is an XML-based
format, designed as a schema of the Prague Markup Language (PML)10 [16]. Never-
theless, its blocks are by no means obliged to use this format.

TectoMT has been developed with modern Linux systems in mind, and as such
its installation requirements are easily met by any contemporary Linux distribution.
It should be noted that TectoMT, being written mostly in Perl, depends on many ex-
ternal Perl modules and its installation scripts are intelligent enough to automatically
download and install any missing dependencies; this, however, circumvents standard
distribution packaging systems, therefore it is better to install all the necessary packages
with the packaging system tools before attempting to install TectoMT. There are also
some C language modules that are not compiled by default, buthave to be compiled
separately inside the TectoMT installation source tree.

TectoMT also has some built-in capabilities for parallelization of its tasks, using the
Sun Grid Engine – it is possible to adapt the Sun Grid Engine batch software to various
Grid middlewares [3], but TectoMT can be run on the Grid system directly without
relying on its internal parallelization possibilities, ifthe user takes care of splitting the
input data into appropriate chunks for parallel processing.

5.2 Tagging a corpus

Morphosyntactic tagging of the Slovak National Corpus consists of two steps. The first
performs morphosyntactic analysis, where each word in the input texts is assigned a
set of possible morphosyntactic tags. This step essentially consists of looking up the
possibilities of lemma/tag combinations in a constant database table using the wordform
as a key, with an additional step for unknown words, where thelist of possible tags is
derived from the similarities of word endings to the ones present in the database tables.
The software is implemented in the Python programming language and is actually quite
fast, since the core of the task consists simply of a look-up in the possibilities in the

10 Not to be confused with the Physical Markup Language.



102 Radovan Garabík, Jan Jona Javoršek, and Tomaž Erjavec

tables, and most of the CPU work is spent on I/O operations, parsing the input file and
assembling the output. On a reasonably recent hardware (Intel Xeon 2.33 GHz CPU) it
is able to process over 10 000 words per second. It can also parallelize easily, since the
words can be analyzed independently of each other.

The second step is disambiguation, where each word is assigned a unique lemma
and a morphosyntactic tag out of the possibilities assignedin the first step. For dis-
ambiguation, we usemorče, an averaged perceptron model originally used for the
Czech language tagging [18], re-trained on the Slovak manually annotated corpus.
Disambiguation is much slower that the morphology analysis, its average speed reaches
only about 300 words per second. Parallelization at the application level is also not
possible without some redesign of themorčeitself, but the nature of tagging makes it
easy to split the input data into as many chunks as we want and runmorčeinstantiations
in parallel.

Given the speed differences between morphology analysis and disambiguation, we
can safely consider the morphology analysis execution timenegligible and design the
whole tagging to be done in one step, without the need to parallelize the morphology
analysis process while the disambiguation is to be run in parallel.

5.3 Installation and usage

As our GNU/Linux distribution of choice is Debian11, we did all the testing on the
Squeeze (testing) Debian distribution, which is a “moving target” distribution, meant
for users that want newer version of the distribution and included packages, but do not
want to deal with (potentially) broken bleeding edge packages from theunstableDebian
repositories. To summarize, a package will get intotestingif it has no release-critical
bugs, has spent several days in theunstablerepository and its inclusion intestingwill
not break other packages. We usedtestingdeliberately, because it is advantageous to use
new versions of the required packages which will not become obsolete in near future,
even if the packages intestingrepositories will be rather quickly replaced by still newer
versions.

Debian has a standard method for installing the base system into a chroot environ-
ment, implemented by a tool, calleddebootstrap[1].

Once the chroot environment was created, we proceeded and installed TectoMT Perl
dependencies into the chroot system. Finally, we ran the TectoMT installer. Similarly
we installed the Slovak version of themorčesoftware from within the chroot. The
installation process was unremarkable comparing to a regular installation.

After the chroot environment had been prepared and installed on the Grid servers,
we were able to submit batch jobs with either TectoMT or the disambiguation tasks. We
used the Grid infrastructure to morphosyntactically tag and analyse the spoken Slovak
language corpus [7]. We divided the corpus (434 676 words) into 11 approximately
equally sized chunks and submitted them to be tagged in 11 independent batch jobs,
then joined the results. The run times ranged from 103 to 236 seconds, with the average
time around 141 seconds per job12. Even including the overhead spent on submitting

11 http://www.debian.org
12 Times mentioned arewall times, i.e. total time elapsed from the beginning to the end of the

task, not including the time spent waiting in the job queue ordownloading the data files.



Evaluating Grid Infrastructure for Natural Language Processing 103

and waiting for the job to start, this is a significant reduction of the total time needed to
tag the corpus. In fact, as far as the typical Grid tasks are concerned, our jobs were very
short, and we could achieve less overhead by running longer jobs (a typical Grid jobs
takes from 2 hours to more than a day). Such a s setup will actually be typical when
tagging a bigger, representative text corpus.

6 Conclusion

We demonstrated the possibility to use the Grid infrastructure for NLP related task.
From user point of view, a Grid computer behaves like any ordinary workstation running
Scientific Linux CERN distribution; however, in this article we discussed different
methods of using a custom GNU/Linux environment (or even another operating sys-
tem) to better support the tools needed by the user. We set up and tested a chroot
environment running Debian GNU/LinuxSqueezedistribution. Installing and running
TectoMT framework inside the chrooted environment was straightforward; similarly we
experienced no obstacles in installing and using the Slovaklanguage morphology tagger
– we therefore do not expect any problems in deploying all kinds of “well behaved”
Unix (Linux) based software.

However, in order to truly exploit the Grid potential, we envisage a scheme where
the linguistic data (especially text corpora) are stored onthe Grid infrastructure as well,
and the existing Grid access control infrastructure is extended in order to be provide
secure access to the data to third parties interested in accessing the data in such a way
that all the limitations and conditions arising from the copyright law and other binding
agreements are met.

In this way, we hope that the Grid infrastructure will soon become available to
researches in computational linguistics and, by multiplying the computing resources
available, will speed up linguistic research tasks and enable us to develop new algo-
rithms, research methods and tools.

References

[1] Installing new Debian systems with debootstrap.
http://www.debian-administration.org/articles/426.
Retrieved 2009-10-05.

[2] Public-Key Infrastructure (X.509) (pkix).
http://www.ietf.org/dyn/wg/charter/pkix-charter.html.
Retrieved 2009-10-10.

[3] Borges, G., David, M., Gomes, J., Fernandez, C., Lopez Cacheiro, J., Rey Mayo,
P., Simon Garcia, A., Kant, D., & Sephton, K. (2007). Sun GridEngine, a new
scheduler for EGEE middleware. InIBERGRID – Iberian Grid Infrastructure
Conference.

[4] Carroll, J., Evans, R., & Klein, E. (2005). Supporting Text Mining for e-Science:
the challenges for Grid-enabled Natural Language Processing. InProceedings of
the UK e-Science All Hands Meeting.



104 Radovan Garabík, Jan Jona Javoršek, and Tomaž Erjavec

[5] Ellert, M., Gronager, M., Konstantinov, A., Konya, B., Lindemann, J., Livenson,
I., Nielsen, J., Niinimaki, M., Smirnova, O., & Waananen, A.(2007). Advanced
Resource Connector middleware for lightweight computational Grids. Future
Generation Computer Systems, 23(2), 219–240.

[6] Erjavec, T. & Javoršek, J. J. (2008). Grid Infrastructure Requirements for Sup-
porting Research Activities in Digital Lexicography. InMondilex: Lexicographic
Tools and Techniques, (pp. 5–13). IITP RAS.

[7] Garabík, R. & Rusko, M. (2007). Corpus of Spoken Slovak Language. In Levic-
ká, J. & Garabík, R. (Eds.),Computer Treatment of Slavic and East European
Languages, Brno. Tribun.

[8] Laccetti, G. & Schmid, G. (2007). A framework model for grid security. Future
Generation Computer Systems, 23(5), 702–713.

[9] Luís, T., Martins de Matos, D., Paulo, S., & Ribeiro, R. D.(2008). Natural
Language Engineering on a Computational Grid (NLE-GRID) T5– Performance
Experiments. Technical Report 35 / 2008, INESC-ID, Lisboa.

[10] Martins de Matos, D., Luís, T., & Ribeiro, R. D. (2008). Natural Language
Engineering on a Computational Grid (NLE-GRID) T1 – Architectural Model.
Technical Report 38 / 2008, INESC-ID, Lisboa.

[11] Martins de Matos, D. & Ribeiro, R. D. (2008). Natural Language Engineering on a
Computational Grid (NLE-GRID) T2h – Encapsulation of Reusable Components:
Lexicon Repository and Server, January 2008. Technical Report 32 / 2008,
INESC-ID, Lisboa.

[12] Martins de Matos, D., Ribeiro, R. D., Paulo, S., Batista, F., Coheur, L., & Pardal,
J. P. (2008). Natural Language Engineering on a Computational Grid (NLE-
GRID) T2 – Encapsulation of Reusable Components. TechnicalReport 31 / 2008,
INESC-ID, Lisboa.

[13] Marujo, L., Lin, W., & Martins de Matos, D. (2008). Natural Language Engineer-
ing on a Computational Grid (NLE-GRID) T3 – Multi-ComponentApplication
Builder. Technical Report 33 / 2008, INESC-ID, Lisboa.

[14] Neuroth, H., Kerzel, M., & Gentzsch, W. (Eds.). (2007).German Grid Initiative
D-Grid. Universitätsverlag Göttingen.

[15] Padala, P., Zhu, X., Wang, Z., Singhal, S., & Shin, K. G. (2007). Performance
evaluation of virtualization technologies for server consolidation. Technical
report, HP Laboratories.

[16] Pajas, P. & Šťepánek, J. (2006). XML-based representation of multi-layered
annotation in the PDT 2.0. In Hinrichs, R. E., Ide, N., Palmer, M., & Pustejovsky,
J. (Eds.),Proceedings of the LREC Workshop on Merging and Layering Linguistic
Information (LREC 2006), (pp. 40–47)., Genova, Italy.

[17] Santos, N. & Koblitz, B. (2008). Security in distributed metadata catalogues.
Concurrency and Computation: Practice and Experience, 20(17), 1995–2007.

[18] Spoustová, D., Hajič, J., Raab, J., & Spousta, M. (2009). Semi-supervised training
for the averaged perceptron POS tagger. InEACL ’09: Proceedings of the
12th Conference of the European Chapter of the Association for Computational
Linguistics, (pp. 763–771)., Morristown, NJ, USA. Association for Computational
Linguistics.



Evaluating Grid Infrastructure for Natural Language Processing 105

[19] Tamburini, F. (2004). Building distributed language resources by grid computing.
In Proc. of the 4th International Language Resources and Evaluation Conference,
(pp. 1217–1220).

[20] Žabokrtský, Z., Ptá̌cek, J., & Pajas, P. (2008). TectoMT: Highly modular MT
system with tectogrammatics used as transfer layer. InACL 2008 WMT: Proceed-
ings of the Third Workshop on Statistical Machine Translation, (pp. 167–170).,
Columbus, OH, USA. Association for Computational Linguistics.


